tentukandaerah himpunan penyelesaian dari pertidaksamaan berikut. x ≥ 0. y ≥ 0. 3x + y ≤ 3. x + y > 1. Langkah-langkah menentukan daerah penyelesaiannya itu seperti ini : 1. Pertama-tama, buat garis dari setiap pertidaksamaan. MenentukanDaerah Himpunan Penyelesaian (DHP) dengan Uji Tanda. Dari namanya yaitu " uji tanda ", maka disini kita akan menggunakan tanda yang ada. Tanda yang dimaksud adalah nilainya positif atau negatif. Langkah-langkah Menentukan DHP dengan Uji Tanda : Bentuk umum pertidaksamaannya : a x + b y ≤ c atau a x + b y ≥ c. a). Himpunantitik (x, y) atau himpunan penyelesaian dari sistem pertidaksamaan linear dapat digambarkan pada sistem koordinat Cartesius dengan langkah-langkah sebagai berikut: 1. Gambarkan persamaan garis dengan mengubah tanda pertidaksamaan dengan tanda sama dengan. Demikianlah cara untuk menentukan daerah himpunan penyelesaian (DHP) sistem CaraMenentukan Sistem Pertidaksamaan Dari Daerah Yang Diarsir Daerah yang diarsir pada gambar diatas merupakan himpunan penyelesaian Terbaru / By Ridwan Pada pembahasan kali ini saya akan share informasi berkenaan Contoh Soal Nilai Maksimum Dan Minimum Program Linear, informasi ini dihimpun dari bermacam sumber jadi mohon maaf kalau . – Daerah himpunan penyelesaian dari sistem pertidaksamaan merupakan daerah irisan dari masing-masing daerah himpunan penyelesaian suatu daerah himpunan penyelesaian berarti mencari daerah yang memuat titik-titik koordinat, apabila titik-titik tersebut di masukan ke pertidaksamaan maka pernyataan dari pertidaksamaan tersebut menjadi pernyataan pada pertidaksamaannya salah, maka titik tersebut bukan merupakan himpunan penyelesaian. Sehingga daerah yang memuat titik tersebut bukan merupakan daerah pengertian pertidaksamaan linier dua variabel?Pertidaksamaan linier dua variabel adalah kalimat matematika terbuka yang memiliki dua variabel dengan pangkat masing-masing variabel adalah satu, dan dihubungkan dengan tanda ketidaksamaan yaitu “\>, 3\2. \-2x+4y \” saja. Catatan ini berlaku juga untuk tanda “\\leq\”.Pengujian garis 2Titik uji \0,0\\4x+3y \leq 12\\40+30 \leq 12\\0 \leq 12\ pernyataan benarArtinya daerah penyelesaiannya berada dibawah garis 2, karena titik uji \0,0\ berada dibawah garis 3Titik uji \x=5\\x \geq 0\\5 \geq 0\ pernyataan benarDaerah penyelesaian berada di sebelah kanan garis adalah irisan dari ketiga daerah penyelesaian. Sudah paham sekarang? Kita coba satu lagi Tentukan daerah himpunan penyelesaian dari sistem pertidaksamaan berikut.\\begin{cases} 3x+y \leq 6 \\ 4x+7y \leq 28 \\ x \geq 0 \\ y \geq 0 \end{cases}\Jawab\3x+y = 6\ . . . 1\4x+7y = 28\ . . . 2\x = 0 \ . . . 3\y = 0\ . . . 4Persamaan 1Koordinat titik potongnya \0,6\ dan \2,0\Persamaan 2Koordinat titik potongnya \0,4\ dan \7,0\Persamaan 3 dan Persamaan 4\x=0\ artinya garis yang berhimpit dengan sumbu \y\.\y=0\ artinya garis yang berhimpit dengan sumbu \x\.Pengujian garis 1Titik uji \0,0\\3x+y \leq 6\\30+0 \leq 6\\0 \leq 6\ pernyataan benarDaerah penyelesaian berada dibawah garisPengujian garis 2Titik uji \0,0\\4x+7y \leq 28\\40+70 \leq 28\\0 \leq 28\ pernyataan benarDaerah penyelesaian berada dibawah garis 3 dan 4Titik uji \2,3\\2 \geq 0\ benar, daerah penyelesaian sebelah kanan.\3 \geq 0\ benar, daerah penyelesaian sebelah bangetkan menentukan daerah himpunan penyelesaian dari sistem pertidaksamaan linier dua variabel?Sebelum aku memberikan latihan soal, ada tips dan trik untuk kamu tentang pengujian daerah penyelesaian. Begini aturannya!Lihat koefisien \y\Jika \>0\, maka tandanya “\+\”Jika \\ atau \\geq\, maka tandanya “\+\”Jika \<\ atau \\leq\, maka tandanya “\-\”HasilTanda “\+\” artinya daerah penyelesaian diatas “\-\” artinya daerah penyelesaian dibawah Hasil \=\ koef \y \times\ tanda PTKita coba untuk contoh soal nomor 2 persamaan 1.\-x+2y \geq 2\Koefisien \y\ positif \2\ , berarti tandanya \+\Tanda pertidaksamaannya \\geq\, berarti tandanya \+\Hasil \=\ koef \x \times\ tanda PTHasil \= + \times +\Hasil \= +\ daerah penyelesaian diatas garisMudah sekali bukan? Cobain deh untuk pertidaksamaan lainnya, biar kamu makin Latihan Daerah Himpunan Penyelesaian dari Sistem Pertidaksamaan1. Tentukan himpunan penyelesaian dari sistem pertidaksamaan \3x -2y \leq -6\ dan \y \leq 6\.2. Tentukan daerah penyelesaian dari sistem pertidaksamaan linier dua variabel \x+3y \geq 18,\ \2x+y \leq 16,\ \x \geq 0, y \geq 0\3. Tentukan daerah penyelesaian dari sistem pertidaksamaan linier dua variabel \\begin{cases} 2x+y \leq 24 \\ x+2y \geq 12 \\ x-y \geq -2 \end{cases}\Itulah pembahasan daerah himpunan penyelesaian dari sistem pertidaksamaan, semoga tulisan ini bermanfaat. Berikutnya kita akan belajar kebalikannya yaitu menentukan sistem pertidaksamaan dari daerah penyelesaian, bagikan tulisan ini jika bermanfaat. Blog Koma - Setelah sebelumnya kita mempelajari pengertian program linear dan "Persamaan dan Grafik Bentuk Linear", pada artikel ini kita akan melanjutkan tahapan dalam menyelesaikan masalah program linear yaitu materi Menentukan Daerah Penyelesaian Arsiran sistem Pertidaksamaan. Pada materi Menentukan Daerah Penyelesaian Arsiran sistem Pertidaksamaan ini kita akan bahas cara-cara menentukan daerah penyelesaiannya arsiran yang biasa disingkat DHP Daerah Himpunan Penyelesaian dengan cara uji sembarang titik. Pada materi ini kita akan mulai dari menentukan DHP untuk satu pertidaksamaan linear dua variabel, kemudian dilanjutkan dengan beberapa pertidaksamaan linear dua variabel. Sistem pertidaksamaan merupakan kumpulan dari beberapa pertidaksamaan yang memiliki DHP yang sama. Pengertian Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah $ >, 17 $ Perbedaan Persamaan baik linear atau tidak dengan Pertidaksamaan Perbedaan mendasar antara persamaan dan pertidaksamaan yaitu Persamaan hasilnya berupa grafik untuk persamaan linear berupa garis, sedangkan Pertidaksamaan hasilnya berupa daerah arsiran. Hasil yang dimaksud disini adalah nilai semua variabel yang memenuhi persamaan atau pertidaksamaan. Menentukan Daerah Himpunan Penyelesaian DHP untuk satu pertidaksamaan dengan metode uji sembarang titik Langkah-langkah Menentukan DHP nya i. Gambarlah terlebih dahulu pertidaksamaannya berupa grafik dengan mengubah tanda ketaksamaannya $>, \geq, \leq, , \, 15 $ c. $ x \geq 3 $ d. $ y 15 $ *. Menggambar grafik dari $ 5x + 3y = 15 \, $ dengan menentukan titik potong tipot sumbu-sumbunya Tipot sumbu X, substitusi $ y = 0 $ , $ 5x + 3y = 15 \rightarrow 5x + = 15 \rightarrow 5x = 15 \rightarrow x = 3 $. tipotnya adalah 3,0. Tipot sumbu Y, substitusi $ x = 0 $ , $ 5x + 3y = 15 \rightarrow + 3y = 15 \rightarrow 3y = 15 \rightarrow y = 5 $. tipotnya adalah 0,5. gambar grafiknya yaitu *. Pilih satu titik uji yaitu titik 0,0. Kita substitusikan titik 0,0 ke pertidaksamaan $ \begin{align} x,y = 0,0 \rightarrow 5x + 3y & > 15 \\ + & > 15 \\ 0 & > 15 \, \, \, \, \, \text{salah} \end{align} $ Karena titik uji 0,0 tidak memenuhi pertidaksamaan, maka daerah himpunan penyelesaiannya adalah daerah yang tidak memuat titik 0,0 yaitu daerah sebelah kanan atau atas. *. Grafik daerah himpunan penyelesaiannya diberi warna abu-abu. c. $ x \geq 3 $ *. Grafik dari $ x = 3 \, $ adalah tegak seperti gambar berikut ini. *. Karena yang diminta lebih besar dari 3 $x \geq 3 $, maka daerah himpunan penyelesaiannya adalah di sebelah kanan garis. d. $ y , \, \leq , \, \geq , \, -4 \end{align} $. Artinya 0 lebih besar dari -4, sehingga tanda ketaksamaannya $ > $. Sehingga perttidaksamaan garis I adalah $ x - 2y \geq - 4 $. Garis II $ 4x + 5y = 20 $ $ \begin{align} 4x + 5y & = 20 \\ + \, & \text{tandanya} \, 20 \\ 0 & < 20 \end{align} $. Artinya 0 lebih kecil dari 20, sehingga tanda ketaksamaannya $ < $. Sehingga perttidaksamaan garis I adalah $ 4x + 5y \leq 20 $. Garis III $ x = 0 \, $ Karena daerah himpunan penyelesaian berada di sebelah kanan garis $ x = 0 $, maka diperoleh pertidaksamaan $ x \geq 0$. Garis IV $ y = 0 $ Karena daerah himpunan penyelesaian berada di sebelah atas garis $ y = 0 $, maka diperoleh pertidaksamaan $ y \geq 0 $ Jadi, sistem pertidaksamaan yang memenuhi DHP tersebut yaitu $ x - 2y \geq - 4 , \, 4x + 5y \leq 20 , \, x \geq 0 , \, $ dan $ \, y \geq 0 $ . Sebelumnya kalian telah mempelajari tentang sistem persamaan kuadrat dua variabel, dan cara menyelesaikan masalah nyata yang model matematikanya berkaitan dengan sistem persamaan tesebut. Dalam topik ini kalian akan belajar tentang cara menentukan Daerah Himpunan Penyelesaian DHP sistem pertidaksamaan kuadrat dua variabel. Sistem pertidaksamaan kuadrat dua variabel adalah kumpulan 2 atau lebih pertidaksamaan yang mengandung paling sedikit satu persamaan berderajat dua dalam dua variabel. Berikut ini adalah beberapa contoh sistem pertidaksamaan kuadrat dua variabel Sistem pertidaksamaan 1 y ≤ x2 y > x + 2 Sistem pertidaksamaan 2 y ≤ -x2 + 2x + 1 y ≥ x2 + x + 2 Penyelesaian dari sebuah sistem pertidaksamaan merupakan irisan dari pertidaksamaan-pertidaksamaan yang membentuk sistem tersebut, biasanya lebih mudah ditunjukkan dalam bentuk grafik. Grafik penyelesaian dari sistem pertidaksamaan adalah himpunan titik-titik yang mewakili semua penyelesaian pertidaksamaan dalam sistem pertidakamaan tersebut, dan himpunan titik tersebut dinamakan Daerah Himpunan Penyelesaian DHP. DHP ini dibatasi oleh kurva pembatas yang dibentuk dari pertidaksamaan-pertidaksamaan dalam sistem tersebut. Kurva/garis pembatas dibuat dengan aturan sebagai berikut • Pertidaksamaan yang memuat tanda , kurva pembatasnya digambarkan dengan garis putus-putus • Pertidaksamaan yang memuat tanda ≤ atau ≥, kurva pembatasnya digambarkan dengan garis penuh Bagian yang merupakan daerah himpunan penyelesaian dari suatu pertidaksamaan biasanya diberi arsiran, untuk membedakannya dengan yang bukan DHP. Contoh Gambarlah daerah himpunan penyelesaian sistem persamaan berikut y ≥ x2 y ≤ 2x+3 Penyelesaian Kurva Pembatas y = x2 Untuk menggambar kurva di atas, dapat diambil beberapa nilai absis x, kemudian kita hitung nilai ordinatnya y, sehingga diperoleh sebuah titik. Selanjutnya, titik-titik yang diperoleh kita hubungkan. x = -2 => y = 4 => -2,4 x = -1 => y = 1 => -1,1 x = 0 => y = 0 => 0,0 x = 1 => y = 1 => 1,1 x = 2 => y = 4 => 2,4 Garis Pembatas y=2x+3 Untuk menggambar garis di atas, dapat diambil beberapa nilai absis x, kemudian kita hitung nilai ordinatnya y, sehingga diperoleh sebuah titik. Selanjutnya, titik-titik yang diperoleh kita hubungkan. x = -2 => y = -1 => -2,-1 x = -1 => y = 1 => -1,1 x = 0 => y = 3 => 0,3 x = 1 => y = 5 => 1,5 x = 2 => y = 7 => 2,7 Titik Potong Titik potong diperoleh dengan cara mensubtitusikan persamaan y = x2 ke dalam persamaan y = 2x + 3, sehingga diperoleh x2 = 2x + 3 x2 - 2x - 3 = 0 x-3x+1 = 0 x = 3 atau x = -1 Jika x = -1 maka y = 1 dan jika x = 3 maka y =9. Dengan demikian titik potongnya adalah -1,1 dan 3,9. Daerah Himpunan Penyelesaian Untuk menentukan daerah himpunan penyelesaian, kita perlu melakukan uji titik. y ≥ x2 Ambil sebarang titik, misal titik 0,1. Karena x2 = 0, maka titik 0,1 memenuhi pertidaksamaan y ≥ x2, sehingga daerah penyelesaian berada diatas kurva y = x2. y ≤ 2x + 3 Ambil sebarang titik, misal titik 0,1. Karena 2x+3 =3, maka titik 0,1 memenuhi pertidaksamaan y ≤ 2x + 3 sehingga daerah penyelesaian berada dibawah garis y = 2x + 3. Dengan demikian, daerah himpunan penyelesaian dari sistem pertidaksamaan di atas adalah Cara Mudah Belajar Menentukan Daerah Himpunan Penyelesaian dari Sistem Pertidaksamaan Pada Program Linear di matematika SMA Calon Guru belajar matematika dasar SMA dari Menentukan Daerah Himpunan Penyelesaian dari Sistem Pertidaksamaan Pada Program Linear. Program linear adalah suatu metode yang digunakan untuk memecahkan masalah yang berkaitan dengan optimasi linear nilai maksimum dan nilai minimum. Program Linear ini salah satu materi pokok yang harus dikenal dan dipelajari siswa SMA kelas XI pada pelajaran matematika wajib. Program linear tidak lepas dengan sistem pertidaksamaan linear. Khususnya pada tingkat sekolah menengah, sistem pertidaksamaan linear yang dimaksud adalah sistem pertidaksamaan linear dua dasar pada tingkat pengetahuan minimal berada sampai pada tahap "Menjelaskan program linear dua variabel dan metode penyelesaiannya dengan menggunakan masalah kontekstual" sedangkan pada tingkat keterampilan minimal sampai pada tahap "Menyelesaikan masalah kontekstual yang berkaitan dengan program linear dua variabel". Untuk mencapai apa yang diharapkan oleh pemerintah seperti yang tertulis pada kurikulum, ada satu materi yang penting sebelum belajar program linear, yaitu "Menentukan Daerah Himpunan Penyelesaian". Menyelesaikan program linear sangat terkait dengan kemampuan melakukan sketsa sistem daerah himpunan penyelesaian. Ini menjadi syarat perlu untuk mencapai kemampuan "Menjelaskan program linear dua variabel dan metode penyelesaiannya dengan menggunakan masalah kontekstual". Untuk melihat masalah yang berkembang tentang program linear, dan sudah pernah diujikan di Ujian Nasional atau Ujian Masuk Perguruan Tinggi Negeri dapat disimak soal dan catatan hasil diskusi kita sebelumnya yaitu Bank Soal dan Pembahasan Matematika Dasar Program Linear. Menentukan Daerah Himpunan Penyelesaian Sistem Pertidaksamaan Pada Program Linear Berikut ini adalah teknik menentukan daerah himpunan penyelesaian Buat sumbu koordinat kartesius Tentukan titik potong pada sumbu $x$ dan $y$ dari semua persamaan-persamaan linearnya. Sketsa grafiknya dengan menghubungkan antara titik-titik potongnya. Pilih satu titik uji yang berada di luar garis. Substitusikan pada persamaan Tentukan daerah yang dimaksud Untuk belajar menentukan daerah himpunan penyelesaian dari sistem pertidaksamaan kita mulai dari beberapa contoh pertidaksamaan yang sederhana berikut ini; Menentukan Daerah Penyelesaian Dari Pertidaksamaan $x \leq 0$ Langkah pertama untuk menentukan daerah penyelesaian sebuah pertidaksamaan adalah kita bisa menentukan daerah penyelesaian persamaan. Sebelum kita gambar daerah pertidaksamaan $x \leq 0$, kita coba gambar daerah penyelesaian $x=0$. Gambar daerah penyelesaian $x=0$ adalah garis yang berimpit dengan sumbu-$y$, gambar $x=0$ adalah berupa garis, yang artinya sepanjang garis tersebut nilai dari $x$ adalah $0$. Garis $x=0$ membagi daerah menjadi dua bagian yang berbeda, pada gambar berikut daerah di kiri garis yang berwarna merah dan daerah di kanan garis berwarna hijau. Untuk menentukan daerah penyelesaian $x \leq 0$ pada daerah hijau *di kanan garis atau daerah merah *di kiri garis yang dibatasi oleh $x=0$, dapat kita lakukan dengan Uji Titik pada salah satu daerah. Misal kita pilih sebuah titik sembarang yaitu $\left3,2 \right$. Pada titik $\left3,2 \right$ kita peroleh $x \geq 0$ sehingga dapat kita ambil kesimpulan bahwa titik $\left3,2 \right$ berada pada daerah $x \geq 0$ yaitu daerah hijau *di kanan garis. Berdasarkan hasil di atas juga kita dapat menentukan daerah merah *di kiri garis adalah daerah penyelesaian untuk $x \leq 0$. Menentukan Daerah Penyelesaian Dari Pertidaksamaan $y \geq 0$ Langkah pertama untuk menentukan daerah penyelesaian sebuah pertidaksamaan adalah kita bisa menentukan daerah penyelesaian persamaan. Sebelum kita gambar daerah pertidaksamaan $y \geq 0$, kita coba gambar daerah penyelesaian $y=0$. Gambar daerah penyelesaian $y=0$ adalah garis yang berimpit dengan sumbu-$x$, gambar $y=0$ adalah berupa garis, yang artinya sepanjang garis tersebut nilai dari $y$ adalah $0$. Garis $y=0$ membagi daerah menjadi dua bagian yang berbeda, pada gambar berikut daerah di bawah garis *yang berwarna merah dan daerah di atas garis *yang berwarna hijau. Untuk menentukan daerah penyelesaian $y \geq 0$ pada daerah merah *di atas garis atau daerah hijau *di bahwa garis yang dibatasi oleh $y=0$, dapat kita lakukan dengan Uji Titik pada salah satu daerah. Misal kita pilih sebuah titik sembarang yaitu $\left3,2 \right$. Pada titik $\left3,2 \right$ kita peroleh $y \geq 0$ sehingga dapat kita ambil kesimpulan bahwa titik $\left3,2 \right$ berada pada daerah $y \geq 0$ yaitu daerah hijau *di atas garis. Berdasarkan hasil di atas juga kita dapat menentukan daerah merah *di bawah garis adalah daerah penyelesaian untuk $y \leq 0$. Menentukan Daerah Penyelesaian Dari Pertidaksamaan $2x+3y \leq 12$ Langkah pertama untuk menentukan daerah penyelesaian sebuah pertidaksamaan adalah kita bisa menentukan daerah penyelesaian persamaan. Sebelum kita gambar daerah pertidaksamaan $2x+3y \leq 12$, kita coba gambar daerah penyelesaian $2x+3y=12$. Buat sumbu koordinat kartesius Tentukan titik potong pada sumbu $x$ dan $y$ dari semua persamaan-persamaan linearnya. Titik potong pada sumbu $x$ maka $y=0$ $\begin{align} 2x+3y & = 12 \\ 2x+30 & = 12 \\ 2x & = 12 \\ x & = 6 \end{align}$ Titik potong pada sumbu $x$ adalah $\left 6,0 \right$ Titik potong pada sumbu $y$ maka $x=0$ $\begin{align} 2x+3y & = 12 \\ 20+3y & = 12 \\ 3y & = 12 \\ y & = 4 \end{align}$ Titik potong pada sumbu $y$ adalah $\left 0,4 \right$ Sketsa grafiknya dengan menghubungkan antara titik-titik potongnya. Gambar daerah penyelesaian $2x+3y=12$ adalah sebagai berikut, gambar $2x+3y=12$ adalah berupa garis, yang artinya sepanjang garis tersebut nilai dari $2x+3y$ adalah $12$. Pilih satu titik uji yang berada di luar garis, kita pilih titik $\left 0,0 \right$ Substitusikan pada persamaan Garis $2x+3y=12$ membagi daerah menjadi dua bagian yang berbeda, pada gambar berikut daerah di atas garis yang berwarna merah dan daerah di bawah garis berwarna hijau. Untuk menentukan daerah penyelesaian dari daerah hijau *di bawah garis dan daerah merah *di atas garis yang dibatasi oleh $2x+3y=12$. dapat kita lakukan dengan Uji Titik pada salah satu daerah. Misal kita pilih sebuah titik sembarang yaitu $\left0,0 \right$. Titik $\left0,0 \right$ kita uji ke $2x+3y \leq 12$ dan kita peroleh $\begin{align} 2x+3y & \leq 12 \\ 20+30 & \leq 12 \\ 0 & \leq 12 \end{align}$ Dari hasil di atas, $0$ benar kurang dari $12$ sehingga dapat kita ambil kesimpulan bahwa titik $\left0,0 \right$ berada pada daerah yang diinginkan $2x+3y \leq 12$ yaitu daerah hijau *di bawah garis. Jika kurang paham kita coba satu titik lagi, misal kita pilih sebuah titik sembarang yaitu $\left-2,1 \right$. Titik $\left-2,1 \right$ kita uji ke $2x+3y \leq 12$ dan kita peroleh $\begin{align} 2x+3y & \leq 12 \\ 2-2+31 & \leq 12 \\ -4+3 & \leq 12 \\ -1 & \leq 12 \\ \end{align}$ Dari hasil di atas, $-1$ benar kurang dari $12$ sehingga dapat kita ambil kesimpulan bahwa titik $\left-2,1 \right$ berada pada daerah yang diinginkan $2x+3y \leq 12$ yaitu daerah hijau *di bawah garis. Berdasarkan hasil yang kita peroleh di atas juga kita dapat menentukan daerah merah *di atas garis adalah daerah penyelesaian untuk $2x+3y \geq 12$. Untuk menentukan daerah himpunan penyelesaian dari pertidaksamaan jika tidak memakai tanda sama dengan maka garisnya menjadi putus-putus seperti berikut. Daerah penyelesaian dari pertidaksamaan $2x+3y \lt 12$, atau bisa kita sebutkan daerah himpunan penyelesaian $2x+3y$ yang kurang dari $12$. Daerah penyelesaian yang memenuhi untuk sistem pertidaksamaan berikut ini $\begin{align} x+2y & \leq 6 \\ 5x+3y & \leq 15 \\ x & \geq 0\\ y & \geq 0 \end{align}$ Jika keempat pertidaksamaan di atas kita gambarkan dengan langkah-langkah seperti yang dijelaskan di atas pada diagram kartesius maka akan kita peroleh gambar seperti berikut ini; Setelah kita dapatkan gambaran dari daerah HP pertidaksamaan yang diinginkan, daerah HP dari beberapa pertidaksamaan disebutlah dengan Daerah Himpunan Penyelesaian Sistem Pertidaksamaan. Daerah HP Sistem Pertidaksamaan adalah Irisan dari beberapa daerah HP pertidaksamaan. Untuk memperoleh irisan beberapa HP pertidaksamaan, dapat kita peroleh dengan menggambarnya dalam satu diagram koordinat kartesius, seperti berikut ini Daerah HP Sistem Pertidaksamaan adalah Irisan dari beberapa daerah HP pertidaksamaan, bisa dilihat dari daerah yang memenuhi keempat pertidaksamaan. Jika menggunakan metode arsiran, maka HP adalah daerah yang paling banyak terkena arsiran. Pada gambar di atas daerah irisan HP adalah daerah arisran yang diarsir empat kali, seperti berikut ini Selanjutnya jika langkah-langkah di atas sudah paham, kita dapat menggunakan trik berikut ini untuk menghemat bebrapa langkah dalam menentukan daerah himpunan penyelesaian Sebagai alternatif, trik untuk menentukan daerah Himpunan Penyelesaian. Dengan melihat koefisien variabel $y$ pada pertidaksamaan. Jika koefisien $y$ positif dan tanda pertidaksamaan $\leq$ maka Daerah Penyelesaian berada di bawah garis. Jika koefisien $y$ positif dan tanda pertidaksamaan $\geq$ maka Daerah Penyelesaian berada di atas garis. Untuk melatih kemampuan dalam menyelesaikan soal tentang program linear dapat melihat soal yang berkembang pada catatan sebelumnya yaitu Bank Soal dan Pembahasan Matematika Dasar Program Linear. 1. Tentukan daerah himpunan penyelesaian yang memenuhi untuk sistem pertidaksamaan berikut ini. $\begin{align} x+2y & \leq 20 \\ x+y & \leq 12 \\ x & \geq 0 \\ y & \geq 0 \end{align} $ Alternatif Pembahasan$I\ x+2y \leq 20$ ; $II\ x+y \leq 12$ ; $III\ x \geq 0$ ; $IV\ y \geq 0$ Jika sistem pertidaksamaan di atas kita gambarkan dalam satu diagram koordinat kartesius maka gambarnya dapat berupa seperti berikut ini Ada kalanya kita kesulitan melihat himpunan penyelesaian karena himpunan penyelesaian sistem pertidaksamaan linear adalah daerah yang paling banyak diarsir. Sebagai alternatif dapat digunakan dengan metode terbalik. Caranya, yang diarsir bukan daerah HP pertidaksamaan terbalik. Dengan matode terbalik, HP adalah daerah yang tidak diarsir atau daerah yang bersih. Gambarannya seperti berikut 2. Tentukan daerah himpunan penyelesaian yang memenuhi untuk sistem pertidaksamaan berikut ini. $\begin{align} x+2y &\leq 8 \\ 3x+2y &\leq 12 \\ x & \geq 0 \\ y & \geq 0 \end{align} $ Alternatif Pembahasan$I\ 3x+2y \leq 12$ ; $II\ x+2y \leq 8$ ; $III\ x \geq 0$ ; $IV\ y \geq 0$ Jika sistem pertidaksamaan di atas kita gambarkan dalam satu diagram koordinat kartesius maka gambarnya dapat berupa seperti berikut ini Ada kalanya kita kesulitan melihat himpunan penyelesaian karena himpunan penyelesaian sistem pertidaksamaan linear adalah daerah yang paling banyak diarsir. Sebagai alternatif dapat digunakan dengan metode terbalik. Caranya, yang diarsir bukan daerah HP pertidaksamaan terbalik. Dengan matode terbalik, HP adalah daerah yang tidak diarsir atau daerah yang bersih. Gambarannya seperti berikut 3. Daerah himpunan penyelesaian yang memenuhi untuk sistem pertidaksamaan berikut ini, $\begin{align} x+2y & \leq 10 \\ x-y & \leq 0 \\ 2x-y & \geq 0 \\ x & \geq 0 \\ y & \geq 0 \end{align} $ ditunjukkan oleh daerah nomor... Alternatif PembahasanHimpunan penyelesaian dari sistem pertidaksamaan $1 x+2y \leq 10$ ; $2 x-y \leq 0$ ; $3 2x-y \geq 0$ ; $4 x \geq 0$ ; $5 y \geq 0$.Jika sistem pertidaksamaan di atas kita gambarkan dalam satu diagram koordinat kartesius maka gambarnya dapat berupa seperti berikut ini Ada kalanya kita kesulitan melihat himpunan penyelesaian karena himpunan penyelesaian sistem pertidaksamaan linear adalah daerah yang paling banyak diarsir. Sebagai alternatif dapat digunakan dengan metode terbalik. Caranya, yang diarsir bukan daerah HP pertidaksamaan terbalik. Dengan matode terbalik, HP adalah daerah yang tidak diarsir atau daerah yang bersih. Gambarannya seperti berikut Daerah HP sistem pertidaksamaan adalah daerah yang ditunjukkan pada gambar daerah nomor $V$ 4. Tentukan daerah himpunan penyelesaian yang memenuhi untuk sistem pertidaksamaan berikut ini. $\begin{align} 2x+3y & \geq 12 \\ x+y & \leq 5 \\ x & \geq 0 \\ y & \geq 0 \end{align} $ Alternatif Pembahasan$I\ x+2y \leq 20$ ; $II\ x+y \leq 12$ ; $III\ x \geq 0$ ; $IV\ y \geq 0$ Jika sistem pertidaksamaan di atas kita gambarkan dalam satu diagram koordinat kartesius maka gambarnya dapat berupa seperti berikut ini Ada kalanya kita kesulitan melihat himpunan penyelesaian karena himpunan penyelesaian sistem pertidaksamaan linear adalah daerah yang paling banyak diarsir. Sebagai alternatif dapat digunakan dengan metode terbalik. Caranya, yang diarsir bukan daerah HP pertidaksamaan terbalik. Dengan matode terbalik, HP adalah daerah yang tidak diarsir atau daerah yang bersih. Gambarannya seperti berikut Untuk segala sesuatu hal yang perlu kita diskusikan terkait Belajar Menentukan Daerah Himpunan Penyelesaian dari Sistem Pertidaksamaan Pada Program Linear silahkan disampaikan Ÿ™ CMIIWŸ˜Š. Jangan Lupa Untuk Berbagi Ÿ™ Share is Caring Ÿ€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEŸ˜Š

daerah himpunan penyelesaian dari sistem pertidaksamaan